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Random graphs with hidden color
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~Received 23 April 2003; published 15 July 2003!

We propose and investigate a unifying class of sparse random graph models, based on ahidden coloringof
edge-vertex incidences, extending an existing approach, random graphs with a given degree distribution, in a
way that admits a nontrivial correlation structure in the resulting graphs. The approach unifies a number of
existing random graph ensembles within a common general formalism, and allows for the analytic calculation
of observable graph characteristics. In particular, generating function techniques are used to derive the size
distribution of connected components~clusters! as well as the location of the percolation threshold where a
giant component appears.

DOI: 10.1103/PhysRevE.68.015102 PACS number~s!: 89.75.Fb, 02.50.2r, 64.60.2i
he
e
hi
an

,
ow
ca
e
e
il
e

i-
y

m

e
re
-
ph

e

ll-
o

av
a-
re

of
ix

G

del

re
aph
be

ten-

l
int.

r

the
of

ng

ng

n
tri-
nd

ci-

r-
INTRODUCTION

There is a growing interest in complex networks, in t
physics community as well as in other sciences, partly du
an increased availability of data on real-world networks. T
is reflected in a rapidly increasing number of models of r
dom graphs@1–5# and dynamical random graphs@6–10#,
with varying degrees of generality.

This multitude of models calls for a unifying formalism
including more specific models as special cases, while all
ing for the calculation of observable characteristics that
be compared to those of real networks. Dynamical mod
are interesting in their own rights, but the dynamics is s
dom directly observable in real-world networks, and we w
focus on static ensembles of random graphs, irrespectiv
whether they result from a dynamical process or not.

Specifically, we will consider models of simple, und
rected graphs that aresparse~the edge count grows linearl
with the node countN) and truly random~having no under-
lying regular structure!. The classic random graphin its
sparse version is of this type@1,11,12#, where each of the
N(N21)/2 possible edges is independently and rando
realized with a fixed probabilityp5c/N. It has a Poissonian
asymptotic degree~connectivity! distribution with averagec
and a percolation threshold atc51. It fails, however, to
describe most real-world networks.

Instead, we turn to two of the more general approach
based on slightly different philosophies. One, to be refer
to as DRG~degree-driven random graph!, amounts to choos
ing a random member from the set of simple labeled gra
with a given arbitrary degree distribution@2,13,14#. The
other is inhomogeneous random graph@4#, IRG, where the
classic model is generalized by randomly coloring vertic
according to a color distribution$r i%, and realizing edges
independently with color-dependent probabilitiesci j /N.
Both yield analytically tractable models displaying we
defined percolation thresholds and degree distributions, b
include a number of more specific models, and both h
limitations: DRG fails to produce nontrivial edge correl
tions, as seen in the factorization of the combined deg
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distribution of connected vertex pairs@7#; in IRG, the result-
ing degree distribution is limited to a Poissonian mix@4#.

These approaches are not unrelated: The restriction
DRG to degree distributions in the form of a Poissonian m
is in fact asymptotically equivalent to the restriction of IR
to a rank-onec matrix,cab5CaCb ~exhibiting DRG’s lack of
correlations!; this common subset contains the classic mo
@4#.

BASIC IDEA

By combining the philosophies of DRG and IRG, a mo
general class of analytically tractable sparse random gr
models can be constructed. This unifying approach, to
referred to as CDRG~for colored DRG!, contains IRG and
DRG as particular subsets, and is defined as a direct ex
sion of DRG by assigning ahidden color to each vertex
connection~a half edge orstub!. As a result, each edge wil
be associated with a pair of colors, one for each end po
We then consider a given distribution$pm% of colored de-
greesm5(m1 , . . . ,mK), where for each vertex its numbe
mk of stubs of each colork is accounted for, and allow the
edge distribution to be color-sensitive by specifying also
distribution of edge color pairs. The resulting ensemble
stub-colored graphs yields, if the coloring is consideredun-
observable, a well-defined graph ensemble. The colori
thus can be thought of as a set ofhidden variables, the pur-
pose of which is to induce correlations in the resulti
graphs.

Below, we will discuss the definition and implementatio
of CDRG models, derive the asymptotic cluster size dis
bution yielding equations for the percolation threshold, a
identify the subsets corresponding to DRG~trivial! and IRG
~less trivial!.

ASYMPTOTIC MODEL SPECIFICATION

A particular asymptotic CDRG model is defined by spe
fying the following features.

~1! A definite color space, say$1,2, . . . ,K%.
~2! An asymptotic colored degree distribution~CDD!,

pm , defining the relative frequencies of vertices with diffe
ent colored degreesm5(m1 , . . . ,mK), where ma is the
©2003 The American Physical Society02-1



re

it
n

a
D

y

,

o
b

e-
b
m
e

ng
ng

om
in
te
r

a

n

e

lly

dy
o
h
e
G

the
t-

ly

at

to
un-
the
les

m-
ing

by

r of

m-

of
h in

of
ting
ent
ob-
sti-

mall
will
col-

RAPID COMMUNICATIONS
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number ofa-colored stubs of the vertex. We will assume he
that all its moments,̂ma&[(mpmma , ^mamb&, etc., are de-
fined.

~3! A symmetric, non-negativeK3K color preference
matrix T, controlling the relative abundance;^ma&Tab^mb&
of edges between different color pairsa,b. It must satisfy

(
b51

K

Tab^mb&51. ~1!

Note that the total degree of a vertex is simply the sum of
colored degree components; the usual degree distributio
thus also fixed, and amounts topm5(md(m,(ama)pm .

TRUNCATION TO FINITE N

We want to implement such an asymptotic model with
specificN. This can be done, e.g., by transforming the CD
into a definite colored degree sequence, as described b
number of verticesNm'Npm with colored degreem, sub-
ject to obvious constraints such asm,N, (mNm5N, and
(mNm is even. Similarly, the matrixT is used to determine
the number of edges with color-pairab as nab
'N^ma&Tab^mb&. Note that eachab edge is counted twice
asab and asba, so the diagonal elementsnaa must be even.
The number of edge end points~butts! with color a becomes
na5(bnab'N^ma&(bTab^mb&, and care must be taken s
that this matches the corresponding number of stu
(mmaNm'N^ma&—thus constraint~1! on T.

This yields a pool of vertices with definite colored d
grees and a pool of edges with definite color pairs, all to
considered distinguishable. The set of distinct ways to co
bine these into a simple graph with color-matching betwe
butts and stubs defines a set of colored graphs. By drawi
random member from this set and neglecting the colori
the desired truncated CDRG ensemble results.

IMPLEMENTATION IN PRACTICE

When it comes to the practical task of generating rand
graphs from this ensemble, the difficult step is that of pick
a random member from the set of colored graphs, consis
with definiteNm andnab . A random stub-pairing method fo
DRG @2# can be extended to the case of colored stubs
follows.

~1! For each colora, make a complete random assignme
between thena butts of colora and thena matching stubs, to
determine which butt should attach to which stub.

~2! While the resulting graph is not simple, repeat st
~1!.

Alternatively, the implementation could be done in a fu
stochastic manner, where an extra initial step is to drawN
colored degrees independently frompm , and a pool of edges
from qab5^ma&Tab^mb&/(c^mc&, subject to matching
counts of stubs and butts of each color. In the thermo
namic limit, the result would be equivalent. Such a meth
would be more in line with the identification of CDRG wit
the Feynman graphs of zero-dimensional multicompon
field theories, in analogy with the relation between DR
01510
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models and zero-dimensional scalar field theories@15#
Of course, either generation method is feasible only if

probability of obtaining a simple graph in each pairing a
tempt is not too small. This probability is asymptotical
calculable.

PAIRING EFFICIENCY

A completely random pairing without the restriction th
the resulting graph be simple yields an ensemble ofmulti-
graphs, i.e., possibly nonsimple graphs whereloops ~cycles
of length 1! and/or multiple edgesare allowed. The effi-
ciency of the above method depends on the probability
obtain a simple graph, which in turn depends on the ab
dance of loops and multiple edges. In a sparse graph,
probability for an edge between a given pair of nodes sca
as 1/N, so we expect a finite number both of double edges~a
factor of N2 for the choice of a node pair and 1/N2 for two
edges! and of loops (N for the choice of node and 1/N for the
edge making a loop!.

In fact, we can compute the asymptotically expected nu
ber of loops and double edges in a random pairing to lead
order:

Loops. For a single vertex with colored degreem, the
probability that two of its stubs will be connected is given
(ab(mamb2madab)Tab/2N. Averaging overm and sum-
ming over the node choice yields the expected numbe
loops asa5(abMabTab/2, i.e.,

a5 1
2 Tr~TM !, ~2!

whereM5$Mab% stands for the matrix of moments^mamb
2madab&.

Double edges. Similarly, for an arbitrary pair of nodes
with colored degreesm,m8, the probability of a double edge
asymptotically amounts to(abcd(mamb2madab)(mc8md8
2mc8dcd)TacTbd /(2N2). Averaging overm,m8 and sum-
ming over the choice of node pair yields the expected nu
ber of double edges asb5(abcdMabMcdTacTbd /4, i.e.,

b5 1
4 Tr~TM !2, ~3!

while triple edges, etc., can be neglected altogether.
In a similar way, the asymptotically expected number

more general small subgraphs can be computed, whic
particular enables the computation of the expectation
higher powers of the loop and double edge counts, resul
in the two counts asymptotically behaving as independ
Poissonian random variables. Hence, the probability of
taining a simple graph in the random pairing can be e
mated as

Prob~simple!'exp~2a2b!. ~4!

As a result, an average of;exp(a1b) pairing attempts is
needed, rendering the method feasible for reasonably s
a1b; in other cases an alternative generation method
have to be employed, such as starting from an arbitrary
2-2
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ored graph consistent withNm ,nab , and applying a colored
extension of a degree-preserving random rewiring algorit
suggested for DRG@16#.

CONNECTED COMPONENT STATISTICS

The size distribution of the connected components~clus-
ters! of a random graph can be probed by choosing an in
vertex at random and recursively following edges to n
neighbors@14#. The sparsity of edges forces a finite set
revealed vertices to form atree in the thermodynamic limit,
since crosslinking is suppressed by factors of 1/N. Hence,
loops and double edges can be neglected to leading o
and the random color-matched pairing between stubs
butts reduces to arandom branching process~branched poly-
mer! based on the rules:~i! an edge emanating from a stub
color a ends in a stub of colorb with probability Tab^mb&;
~ii ! given the colorb of a stub, it belongs to a vertex wit
colored degreem with probability mbpm /^mb&.

The asymptotic random branching process is convenie
described in terms of a generating functiong(z)5(nPnzn

for the probabilityPn that the connected component bei
revealed consists ofn vertices.g(z) can be expressed i
terms of the corresponding generating functionsh(z)
5$ha(z)% for the number of nodes in a branch starting fro
a stub of colora. g(z) and h(z) satisfy the recursive rela
tions

g~z!5z(
m

pm)
a

ha~z!ma[zH„h~z!…, ~5a!

ha~z!5z(
b

Tab(
m

pmmb)
c

hc~z!mc2dcb

[z(
b

Tab]bH„h~z!…, ~5b!

where H(x)5(mpmxm[(mpm)axa
ma is the multivariate

generating function for the CDD, while]b stands for the
derivative with respect to thebth argument ofH. Equations
~5! can be derived as follows. Equation~5a!: The explicit
factor ofz accounts for the initial vertex, while the remaind
consists of an average over the colored degreem of the ini-
tial vertex, of a factorha(z) for each stub of colora, ac-
counting for the contribution of the branch starting in th
stub. Equation~5b!: Starting from a stub of colora, the
asymptotic probability that the other end of the attached e
has colorb and is connected to a vertex having colored d
gree m is given by Tabpmmb ; include a factorz for that
vertex, and a factorhc(z) for each branch reached via one
its remaining (mc2dcb) stubs of colorc.

PERCOLATION THRESHOLD

Of particular interest is the value ofg for z51: naively,
we expectg(1)5ha(1)51, expressing the normalization o
probability. Indeed, this defines a fixed point of recurren
~5!, which however may be unstable. The stability can
analyzed by linearization of Eq.~5b! aroundh(1)51, yield-
01510
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ing the Jacobian matrixJ defined by

Jab5(
c

Tac]c]bH~h!uh51 , ~6!

which can be written asJ5TM @c.f. Eqs.~2! and ~3!#.
The point is that if an eigenvalue ofJ exceeds 1, the naive

fixed pointh(1)51 turns unstable, signalingsupercriticality
of the branching process. In such a case, another fixed p
will appear and take over as a stable solution withha(1)
,1, yielding g(1),1. Analogous phenomenona occur
the classic model as well as in IRG and DRG; the associa
probability deficit 12g(1) is interpreted as the probabilit
of hitting a giant componentasymptotically containing a fi-
nite fraction 12g(1) of the vertices. This corresponds to
percolating phase; the percolation threshold is defined by th
largest eigenvalue ofTM being precisely 1.

INCLUSION OF OTHER MODELS

With a single colorK51, CDRG trivially reduces to
DRG, where a model is based on a given degree distribu
$pm%, while the preference matrixT reduces to a number
which by virtue of constraint~1! must equal̂ m&21. Equa-
tions ~5! reduce to the corresponding DRG equations

g~z!5zH„h~z!…, ~7a!

h~z!5z
H8„h~z!…

H8~1!
, ~7b!

with H(x)[(mpmxm generatingpm . The percolating phase
is defined byJ[^m(m21)&/^m&.1, yielding the well-
known ^m(m22)&.0 @14#.

The relation to IRG is less trivial: Assume the CDD to b
in the form of a multi-Poissonian mix, i.e.,H(x)
5( i r iexp@(aCia(xa21)#. Define

gi~z![z expS (
a

Cia„ha~z!21…D , ~8a!

ci j [(
ab

CiaTabCjb , ~8b!

in terms of which Eqs.~5! reduce to

g~z!5(
i

r igi~z!, ~9a!

gi~z!5z expS (
j

r jci j ~gj~z!21! D . ~9b!

Equations~9! exactly reproduce the result forg(z) in an IRG
model, withr i taken as the probability of vertex colori and
ci j /N the probability of an edge between a pair of vertic
with colors i , j @4#.
2-3
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Conversely, given an IRG model in terms of$r i ,ci j %, one
can always find$Cia ,Tab% satisfying Eq. ~8b! such that
(aCia5( j ci j r j .

It follows that CDRG contains also ensembles result
from dynamical models such as randomly grown graphs@7#
and dynamical random graphs with memory@8#, which can
be described in IRG@4#, albeit at the cost of infinitely many
colors.

CONCLUDING REMARKS

The above analysis shows that DRG and IRG can be
fied into a more general class of random graph models,
fined in terms of a hidden coloring of stubs and butts, w
specified distributions of color-extended vertex degrees
well of edge color pairs. The purpose of the hidden color
is to enable a nontrivial correlation structure in the result
graphs.

This approach yields a general formalism for a large cl
of analytically tractable models on a given degree distri
tion, where local and global properties of the resulti
-

y
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graphs are calculable in the thermodynamic limit. Such
formalism also defines a suitable target for statistical mo
inference based on observed structural properties.

We have here assumed all moments of the degree di
bution to exist, excluding, e.g., power behavior. The a
proach will be extended also to models with ‘‘fat tails
These are sensitive to the precise truncation method and
be treated elsewhere.

A more detailed investigation, addressing aspects
properties of CDRG models not treated in this Rapid Co
munication, is in progress and will be the subject of a for
coming paper, as will the extension to directed graphs an
degree distributions with power tails.

Note added. Recently, the author was made aware of
article describing a related approach that can be seen a
restriction of CDRG to homogeneously colored vertices@17#.
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