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Random graphs with hidden color
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We propose and investigate a unifying class of sparse random graph models, badeddenaoloringof
edge-vertex incidences, extending an existing approach, random graphs with a given degree distribution, in a
way that admits a nontrivial correlation structure in the resulting graphs. The approach unifies a number of
existing random graph ensembles within a common general formalism, and allows for the analytic calculation
of observable graph characteristics. In particular, generating function techniques are used to derive the size
distribution of connected componer(iduster$ as well as the location of the percolation threshold where a
giant component appears.
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INTRODUCTION distribution of connected vertex pairg]; in IRG, the result-
ing degree distribution is limited to a Poissonian rid.

There is a growing interest in complex networks, in the These approaches are not unrelated: The restriction of
physics community as well as in other sciences, partly due t®RG to degree distributions in the form of a Poissonian mix
an increased availability of data on real-world networks. Thigs in fact asymptotically equivalent to the restriction of IRG
is reflected in a rapidly increasing number of models of ranto a rank-one& matrix, c,p= C,Cy, (exhibiting DRG’s lack of
dom graphs[1-5] and dynamical random graph§—10Q,  correlationg; this common subset contains the classic model
with varying degrees of generality.

This multitude of models calls for a unifying formalism,
including more specific models as special cases, while allow- BASIC IDEA
ing for the calculation of observable characteristics that can
be compared to those of real networks. Dynamical models By combining the philosophies of DRG and IRG, a more
are interesting in their own rights, but the dynamics is sel-general class of analytically tractable sparse random graph
dom directly observable in real-world networks, and we will models can be constructed. This unifying approach, to be
focus on static ensembles of random graphs, irrespective @éferred to as CDRGfor colored DRG, contains IRG and
whether they result from a dynamical process or not. DRG as particular subsets, and is defined as a direct exten-

Specifically, we will consider models of simple, undi- sion of DRG by assigning &idden colorto each vertex
rected graphs that aparse(the edge count grows linearly connection(a half edge oistub. As a result, each edge will
with the node counN) andtruly random(having no under- be associated with a pair of colors, one for each end point.
lying regular structure The classic random graphin its ~ We then consider a given distributidip,,} of colored de-
sparse version is of this typd,11,13, where each of the greesm=(m,, ... ,mg), where for each vertex its number
N(N—1)/2 possible edges is independently and randomlym, of stubs of each colok is accounted for, and allow the
realized with a fixed probabilitp=c/N. It has a Poissonian edge distribution to be color-sensitive by specifying also the
asymptotic degreéconnectivity distribution with average  distribution of edge color pairs. The resulting ensemble of
and a percolation threshold at=1. It fails, however, to stub-colored graphs yields, if the coloring is consideued
describe most real-world networks. observable a well-defined graph ensemble. The coloring

Instead, we turn to two of the more general approacheghus can be thought of as a sethafiden variablesthe pur-
based on slightly different philosophies. One, to be referreghose of which is to induce correlations in the resulting
to as DRG(degree-driven random graplamounts to choos- graphs.
ing a random member from the set of simple labeled graphs Below, we will discuss the definition and implementation
with a given arbitrary degree distributiof2,13,14. The of CDRG models, derive the asymptotic cluster size distri-
other is inhomogeneous random grg@h, IRG, where the bution yielding equations for the percolation threshold, and
classic model is generalized by randomly coloring verticesdentify the subsets corresponding to DR@vial) and IRG
according to a color distributiofr;}, and realizing edges (less trivia).
independently with color-dependent probabilities /N.

Bot_h yield anal_ytlcally tractable models d|§plgy|ng well- ASYMPTOTIC MODEL SPECIEICATION
defined percolation thresholds and degree distributions, both
include a number of more specific models, and both have A particular asymptotic CDRG model is defined by speci-
limitations: DRG fails to produce nontrivial edge correla- fying the following features.
tions, as seen in the factorization of the combined degree (1) A definite color space, sajl,2, ... K}.
(2) An asymptotic colored degree distributiqicDD),
Pm, defining the relative frequencies of vertices with differ-
*Electronic address: Bo.Soderberg@thep.lu.se ent colored degreesmm=(my, ... mg), wherem, is the
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number ofa-colored stubs of the vertex. We will assume heremodels and zero-dimensional scalar field theofids

that all its moments;m,)== ,p,yMa, {(M,m,), etc., are de- Of course, either generation method is feasible only if the

fined. probability of obtaining a simple graph in each pairing at-
(3) A symmetric, non-negativeK XK color preference tempt is not too small. This probability is asymptotically

matrix T, controlling the relative abundanee(m,)T,,(m,)  calculable.

of edges between different color paash. It must satisfy

PAIRING EFFICIENCY

K
bZl Tan(mp)=1. D A completely random pairing without the restriction that
the resulting graph be simple yields an ensemblenafti-

Note that the total degree of a vertex is simply the sum of it&raPhs i-e., possibly nonsimple graphs wheeeps (cycles

colored degree components: the usual degree distribution § '€ngth 1 and/or multiple edgesare allowed. The effi-

thus also fixed, and amounts pg,=S.8(m,S.m _ ciency of the above method depends on the probability to
=2 m (M, ZaMa) Prn obtain a simple graph, which in turn depends on the abun-

dance of loops and multiple edges. In a sparse graph, the
TRUNCATION TO FINITE N probability for an edge between a given pair of nodes scales
We want to implement such an asymptotic model with a@s 1N, so we expect a finite number both of double edges
specificN. This can be done, e.g., by transforming the cDDfactor of N for the choice of a node pair andNi for two
into a definite colored degree sequence, as described by tglge$ and of loops N for the choice of node andN/for the
number of verticedN,,~Np,, with colored degreen, sub- edge making a loop
ject to obvious constraints such as<N, =,,N,=N, and In fact, we can compute the asymptotically expected num-
>mN,, is even. Similarly, the matrif is used to determine bPer of loops and double edges in a random pairing to leading
the number of edges with color-paimb as n,,  order _ .
~N(m,)Tp(My). Note that eaclab edge is counted twice, ~ L0oOps For a single vertex with colored degree, the
asab and aa, so the diagonal elements,, must be even. probability that two of its stubs will pe connected is given by
The number of edge end poirttsutts with color a becomes ~ Zab(MaMy—Madap) Tay/2N. Averaging overm and sum-
Na=SpNap~N(M)=pTan(My), and care must be taken so Ming over the node chom;e yields the expected number of
that this matches the corresponding number of stubdOOPS asa=ZqpMapTap/2, i€,
2 nMmaN,~N(m,)—thus constraintl) on T.
This yields a pool of vertices with definite colored de- a=3Tr(TM), 2
grees and a pool of edges with definite color pairs, all to be
considered distinguishable. The set of distinct ways to comwhereM ={M ,,,} stands for the matrix of momen¢sn,mj,
bine these into a simple graph with color-matching between-m,3,).
butts and stubs defines a set of colored graphs. By drawing a Double edgesSimilarly, for an arbitrary pair of nodes
random member from this set and neglecting the coloringwith colored degrees,m’, the probability of a double edge

the desired truncated CDRG ensemble results. asymptotically amounts o= 4pcd(MaMy— My dap) (MEMY
—m.8.q) TacTha/(2N?). Averaging overm,m’ and sum-
IMPLEMENTATION IN PRACTICE ming over the choice of node pair yields the expected num-

: . . ber of double edges 8= pcMapMcqTacTva/4, i.€.,
When it comes to the practical task of generating random ges #5=2apcMapMeaTacT b

graphs from this ensemble, the difficult step is that of picking
a random member from the set of colored graphs, consistent
with definiteN,,, andn,,. A random stub-pairing method for

DRG [2] can be extended to the case of colored stubs a¥hile triple edges, etc., can be neglected altogether.
follows. In a similar way, the asymptotically expected number of

(1) For each coloa, make a complete random assignmentMore general small subgraphs can be computed, which in
between than, butts of colora and then, matching stubs, to pgrtlcular enables the computation of the expectation _of
determine which butt should attach to which stub. higher powers of the loop and double edge counts, resulting

2) While the resulting graph is not simple, repeat ste in the two counts asymptotically behaving as independent
(1)_( ) g grap P P pPoissonian random variables. Hence, the probability of ob-

taining a simple graph in the random pairing can be esti-
mated as

B=3Tr(TM)?, 3

Alternatively, the implementation could be done in a fully
stochastic manner, where an extra initial step is to dkaw
colored degrees independently frgry, and a pool of edges )
from  Qap=(My) Tan(M,)/ (M), subject to matching Prol(simple)~exp( —a— B). (4)
counts of stubs and butts of each color. In the thermody-
namic limit, the result would be equivalent. Such a methodAs a result, an average ofexp(a+£) pairing attempts is
would be more in line with the identification of CDRG with needed, rendering the method feasible for reasonably small
the Feynman graphs of zero-dimensional multicomponent+ B; in other cases an alternative generation method will
field theories, in analogy with the relation between DRGhave to be employed, such as starting from an arbitrary col-
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ored graph consistent witN,,,,n,,, and applying a colored ing the Jacobian matrid defined by
extension of a degree-preserving random rewiring algorithm
suggested for DRG16].

Jabzzc: Tacé’cé’bH(h)|h=1a (6)
CONNECTED COMPONENT STATISTICS

which can be written ad=TM [c.f. Egs.(2) and(3)].

The size distribution of the connected componentss- L . . .
pond \,7\1} The point is that if an eigenvalue dfexceeds 1, the naive

ters of a random graph can be probed by choosing an initial. . . . -
vertex at randomganpd recursiv%ly folloxing edgegs to new/X€d pointh(1)=1turns unstable, signalingupercriticality

neighbors[14]. The sparsity of edges forces a finite set ofOf_ the branching process. In such a case, an_other fixed point

revealed vertices to form @ee in the thermodynamic limit, Will appear and take over as a stable solution wigf1)

since crosslinking is suppressed by factors df.1Hence, <1, y'e"?"”g g9(1)<1. Analqgous phenomenona oceur in
épye classic model as well as in IRG and DRG; the associated

and the random color-matched pairing between stubs aanb.a_bility d?ﬁCit 1-9(1) is interpreFed as the pr_obabili_ty

butts reduces to mndom branching procegbranched poly-  ©f Nitting a giant componenasymptotically containing a fi-

men based on the rulegt) an edge emanating from a stub of Nit€ fraction 1-g(1) of the vertices. This corresponds to a

color a ends in a stub of colob with probability Tap(my): percolatmg phasgthe perco!atlon threshold is defined by the

(i) given the colotb of a stub, it belongs to a vertex with 'argest eigenvalue ofM being precisely 1.

colored degreen with probability mpp,,/{my).

The asymptotic random branching process is conveniently INCLUSION OF OTHER MODELS

described in terms of a generating functigfz)==,P,z"

for the probabilityP, that the connected component being D

revealed consists ofi vertices.g(z) can be expressed in

terms of the corresponding generating functioh§z)

={h,(2)} for the number of nodes in a branch starting from

a stub of colora. g(z) andh(z) satisfy the recursive rela-

With a single colorK=1, CDRG trivially reduces to
RG, where a model is based on a given degree distribution
{Pm}, while the preference matriX reduces to a number,
which by virtue of constraintl) must equakm)~1. Equa-
tions (5) reduce to the corresponding DRG equations

tions g(2)=zH(h(2)), (78
g(z)=z§ me;[ ha(2)™=zH(h(2)), (58 H'(h(2))
h(z)=z———, (7b)
H'(1)

ho(z)=2z>2, T mp] | he(z)Me™ %eb
al2) Eb ab% Pm bl:[ o(2) with H(x)=3 ,,p,,x™ generatingp,,,. The percolating phase

is defined byJ=(m(m—1))/(m)>1, vyielding the well-
=22, TapdpH(h(2)), (5b)  known{m(m=2))=>0[14].
b The relation to IRG is less trivial: Assume the CDD to be

_ o in the form of a multi-Poissonian mix, i.e.H(X)
where H(X) =2 pnX"=2npnllax,? is the multivariate =3r;ex2,Cia(X,—1)]. Define
generating function for the CDD, whilé, stands for the
derivative with respect to thibth argument oH. Equations
(5) can be derived as follows. Equatidha): The explicit gi(z)zzexp{g Cia(ha(2)—-1) |, (8a)
factor ofzaccounts for the initial vertex, while the remainder
consists of an average over the colored degneef the ini-
tial vertex, of a factorha(;) for each stub of colpa, ac- Cijzz CiaTarCib (8b)
counting for the contribution of the branch starting in that ab
stub. Equation(5b): Starting from a stub of colom, the
asymptotic probability that the other end of the attached edg# terms of which Eqs(5) reduce to
has colorb and is connected to a vertex having colored de-
greem is given by T,,pnMy; include a factorz for that
vertex, and a factdn.(z) for each branch reached via one of 9(2)= EI rigi(z), (99
its remaining (.— &.p) Stubs of colorc.

PERCOLATION THRESHOLD gi(Z)=ZeXD(Z ricij(g9;(2)—1) . (9b)
J

Of particular interest is the value gffor z=1: naively,
we expectg(1)=h,(1)=1, expressing the normalization of Equationg9) exactly reproduce the result fg(z) in an IRG
probability. Indeed, this defines a fixed point of recurrencesnodel, withr; taken as the probability of vertex coloand
(5), which however may be unstable. The stability can bec;; /N the probability of an edge between a pair of vertices
analyzed by linearization of E45b) aroundh(1)=1, yield-  with colorsi,j [4].
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Conversely, given an IRG model in terms{of ,c;;}, one  graphs are calculable in the thermodynamic limit. Such a
can always find{C;,,T4,} satisfying Eq.(8b) such that formalism also defines a suitable target for statistical model
2aCia=2Zjcjjr; . inference based on observed structural properties.

It follows that CDRG contains also ensembles resulting We have here assumed all moments of the degree distri-
from dynamical models such as randomly grown gragpfjs bution to exist, excluding, e.g., power behavior. The ap-
and dynamical random graphs with mem¢@8}, which can  proach will be extended also to models with “fat tails.”
be described in IRG4], albeit at the cost of infinitely many These are sensitive to the precise truncation method and will
colors. be treated elsewhere.

A more detailed investigation, addressing aspects and
CONCLUDING REMARKS properties of CDRG models not treated in this Rapid Com-
. munication, is in progress and will be the subject of a forth-

The above analysis shows that DRG and IRG can be unicoming paper, as will the extension to directed graphs and to
fied into a more general class of random graph models, dedegree distributions with power tails.
fined in terms of a hidden coloring of stubs and butts, with  Note added Recently, the author was made aware of an
specified distributions of color-extended vertex degrees agrticle describing a related approach that can be seen as the

well of edge color pairs. The purpose of the hidden coloringrestriction of CDRG to homogeneously colored verticed.
is to enable a nontrivial correlation structure in the resulting
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